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AN ALTERNATIVE TO CORRESPONDENCE ANALYSIS USING 
HELLINGER DISTANCE 

C. Radhakrishna Rao 

ABSTRACT. In this paper, a general theory of canonical coordinates is developed for reduction of dimen- 
sionality in multivariate data, assessing the loss of information and plotting higher dimensional data 
in two or three dimensions for visual displays. The theory is applied to data in two way tables with 
variables in one category and samples (individual or populations) in the other. The method is applicable 
to data with continuous measurements on the variables as well as to frequencies of attributes. An al- 
ternative to the usual correspondence analysis of contingency tables based on Hellinger rather than the 
chisquare distance is suggested. The new method has some attractive features and does not suffer from 
some inherent drawbacks resulting from the use of the chi-square distance and variable sample sizes for 
the populations in the correspondence analysis. The technique of biplots where the populations and the 
variables arc represented on the same chart is discussed. 

1.  Canonical Coordinates 

The concept of canonical variates (coordinates) was introduced in an early paper by the author (Rao 
(1948)) for graphical representation of taxonomical units characterized by multiple measurements. This 
was, perhaps, the first attempt to reduce high dimensional data to two or three dimensions using an 
objective criterion for purposes of graphical displays. Since then, graphical representation of multivariate 
data for visual examination of clusters, outliers and other structures in the data has been an active field 
of research. Some of the developments are biplots (Gabriel (1971), Gifi (1990), Nishisato (1980), Gower 
(1993), Greenacre (1993)), multidimensional scaling (Kruskal and Wish (1978)), correspondence analysis 
(Benzecri (1992), Greenacre (1984)), Chernoff's faces (Chernoff (1973)) and parallel coordinates (Maha- 
lanobis, Mazumdar and Rao (1949), Wegman (1990)). Cavalli-Sforza (1991) uses canonical coordinates 
(variables) in interpreting the evolution of human populations. 

The object of the present paper is to briefly review the concept of canonical coordinates as originally 
introduced in 1948 and later elaborated in Rao (1964, 1979, 1980, 1985) in the light of modern develop- 
ments and present an alternative to the current practice of correspondence analysis, which seems to have 
some attractive properties. 

In Section 2 we consider the general problem of transforming the points of a /^dimensional vector 
space endowed with a specified inner product to a lower dimensional Euclidean space with the usual 
definition of inner product and distance. The solution to the problem is considered in a more general 
set up than what is possible through the use of Eckart and Young (1936) theorem. In Section 3, some 
measures are introduced to assess the loss of information in reduction of dimensionality. The role of 
biplots and their interpretation are also discussed. An alternative to correspondence analysis applied to 
contingency tables based on Hellinger rather than the chisquare distance is given in Section 4. 

It is argued that the chisquare distance used in correspondence analysis is not an intrinsic measure 
of the difference between two given population distributions as it depends to some extent on the whole 
set of populations considered in the study, and also on the sample sizes available for the estimation of 
population distributions. In such a case, the configuration of a subset of the populations as revealed by 
correspondence analysis may depend on what other populations are included in the analysis. An example 
is given to show how anomalies can arise in correspondence analysis based on the chisquare distance. On 
the other hand no such anomalies arise with the use of Hellinger distance. 

1991 Mathematics Subject Classification. (121130, G2H17. 
Key words and phrases. Canonical coordinates, Chisquare distance, Contingency tables, Correspondence analysis, 

Hellinger distance, Matrix approximation, Principal component analysis. 
The research work of this paper is sponsored by the US Army Research Office under Grant DAAH04-96-1-0082. 
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2 C. RADHAKRISHNA RAO 

2. Reduction of Dimensionality 

The problem we consider may be stated as follows. Let X = {X: : ■ ■ ■ : Xm) be a p x m data matrix, 
with the 2-th column vector X{ representing measurements of p variables made on the i-th population 
(individual or unit). The column vector X{ will be referred to as the 2-th population profile (PP). The 
PP's can be represented as m points in a p-dimensional vector space RP with a specified inner product 
and the associated norm 

(x,y)    =x'My,x,y e RP (2.1) 

||z||    =(x,x)l'2,x€R? (2.2) 

where M is a positive definite matrix. We may call this the Mahalanobis or M-space. In practical 
situations, it may be necessary to attach a weight w{ > 0 to the i-th PP, the exact use of which will be 
detailed in the following discussion. We represent the vector (vn,... , wm)' by w and the diagonal matrix 
with u>i as the i-th diagonal element by W. The M-space with weight as an additional dimension will be 
referred to as WM-space. [In our treatment we consider W as a general positive definite matrix to cover 
more general applications]. 

The problem is to find a k x m matrix 

y = O'I = ■ ■ • = Ym) (2.3) 

with k < p for representing the PP's in a ^-dimensional Euclidean space (Ek) with the usual inner 
product, x'y for x, y e Ek, and the A;-vector Yt as the profile of the i-th population, in such a way that 
the relative positions of the PP's in the M-space (in terms of distances between profiles) are preserved 
to the extent possible in Ek. For this purpose, we need to have a criterion for measuring the loss of 
information in reducing the dimension of the profile space, by minimizing which we obtain an optimum 
solution for (2.3). 

The relative positions of the PP's in the M-space can be described by what may called a configuration 
matrix 

C = (X - Z1'YM(X - O') = ((Xi - O'MiXj - 0) = (cij) (2.4) 

where £ is some chosen reference; (profile) vector and the c./s represent the distances and angles between 
profiles. 

The corresponding configuration about the origin in the reduced space Ek is Y'Y. The problem then 
reduces to minimizing 

lic-rrn (2.5) 
with respect to Y, ahm matrix as defined in (2.3), for a suitably chosen matrix norm. The following 
theorem proved in Rao (1979, 1980, 1985) provides the solution. 

THEOREM 1.   Consider the s.v.d.  (singular value decomposition) 

M"
2
{X - a')wI/2 = xlu[v; + ... + xpu„v; (2.6) 

with singular values A, > A2 > ... > Xp, where M1/2 and W1'2 are symmetric square roots of M and 
W.  Then the choice 

Y = Y(V= : (2.7) 

or conventionally written in the transposed form 

\iW-l»Vu\2W-l'-2Vi,...1\kW-i'-iVk (2.8) 

where the components of the i-th m-vector are the i-th canonical coordinates (i.e., the coordinates in the i- 
th dimension of the reduced space) for the different populations, minimizes (2.5) for any (W, W) -invariant 
norm as defined in Note 2.1.  We call these coordinates the canonical coordinates for populations (CCP). 
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Note 2.1. {A, 5)-invariant norm of an m x n matrix is the usual norm (satisfying the postulates of 
a norm) with the additional property 

\\C ■ D\\ = ||-||    for any    C, D    such that    C AC = A, D'BD = B (2.9) 

where C is an m x m matrix, D is an n x n matrix, and A and B are positive definite matrices of orders 
m and n respectively. This is a generalization given in Rao (1980) of a unitarily invariant norm defined 
by von Neumann (1937) with A and B as unit matrices. 

Note 2.2. In our applications, we indicate some choices of the reference vector £. However, we note 
that a further minimization of (2.5) with respect to £ leads to the choice 

i = {VW\)-lXWl (2.10) 

where 1 is the column vector of unities. 
Note 2.3. Using the notation 

A(i)    =    Diag(A,,... ,\i) 

U(i)    =    (Ui:...:Ui),V(i) = (Vl:...:Vi)' 

we may write the solution Y given in (2.7) in the concise form 

Yw=hk)Vlk)W-112. (2.11) 

Note 2.4. In the expression (2.C), a symmetric square root of a positive definite matrix is used. It 
can be computed in a simple way as follows. If A is a positive definite matrix of order p with the spectral 
decomposition 

A = ZXjQiQr = Q\2Q' 

where Q = (Qi : ... : Qp), then 

A"2    =    ZXiQiQ'i = QAQ' 

A'1'2    =    XiXir'QiQ'^QX-tQ' (2.12) 

We may look at the problem in a slightly different way by defining what is called the dispersion 
matrix between profiles 

B = (X-Sl')W(X-Sl')' = (bii) (2.13) 

where bu is the weighted variance of the i-th variable and b{j is the weighted covariance between the i-th 
and j-th variables across the profiles. Consider an approximation, Z{ 6 W to (Ar,-^), with the restriction 
that Z\,... , Zm lie in a k dimensional subspace of Rp, in which case we have the representation 

Z = (Zl:...:Zm)=AC (2.14) 

where A is a p x k matrix whose columns span the subspace and C is a k x m matrix. Without loss of 
generality we may choose A to satisfy the condition A'MA = I (i.e., the columns of A are orthonormal in 
the M-space). The dispersion matrix between profiles in the reduced space is ACWC'A', and we choose 
A and C such that 

\\B - ACWC'A'W (2.15) 

is a minimum for an appropriate norm of the matrix. The solution is given in Theorem 2, which is proved 
on the same lines as in Theorem 1. 

THEOREM 2.  Consider the name s.v.d. as in Theorem 1 

M1'*(X - ti')w1'2 = \lulv; + ... + xpupv;. 
Then the optimum choice of AC which minimizes (2.15) for any (M,M)-invariant norm is 

AC(k) = M-'/'^A,^ V{ + ... + \kUkVl)W-1'2 (2.16) 
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where the suffix (k) is introduced to indicate the dimension of the reduced space.   We may choose 

A    =M-ir-(U[:...:Uk) = M-l/2U{k) 

/\iV{w-l'2\ 

<?(*)    = ! UA^W^. (2.17) 

Note 2.5. We may represent the profiles by plotting the columns of C(fc) in a fc-dimensional Euclidean 
space, which is the same solution as that obtained in Theorem 1. 

A geometric approach to the problem of reduction of dimensionality is to fit a fc-dimensional plane 
to the data. A set of m points on a fc-plane can be written as 

O' + AC (2.18) 

where A is a p x fc matrix and C is a fc x m matrix. We determine A, C, £ such that 

\\X-Zl'-AC\\ (2.19) 

is a minimum for a suitably chosen norm.  The solution is given in Theorem 3, which is proved on the 
same lines as in Theorems 1 and 2. 

THEOREM 3. Consider the same s.v.d. as m Theorem 1. Then the choices of A and C as in Theorem 
2 and£ = (l'Wl)-1 A'Wl as in (2.10) minimize any (A/, W)-invariant norm of (2.19). 

Note 2.6. We may also look at the problem in some other ways. Let T be a fc x p matrix providing a 
transformation of the column vectors of X to Y = TX in a fc-dimensional space with the induced inner 
product matrix TM~lT'. The squared distance between the i-th and j-th profiles is 

D% = (A, - XjYMiXi - Xj) (2.20) 

in the full space, and 

Dim = (A, - A,)'r(TA/-|T')-1T(A1 - A',-) (2.21) 

in the reduced space;.  By definition D'\-{k) < D'fj. We may then choose T by minimizing some function 
of the differences or ratios of D'f, and £)?.,,>. 

<■] ij{k) 

One of the functions suggested in Rao (1948) was the difference in the weighted sum of all possible 
differences 

VZwiW^Dl -D2
ij{k)) (2.22) 

which leads to the same solution for Y = TX as in Theorems 1, 2 and 3. 
Another method is to choose T by maximizing the minimum of D2j,k, over all i and j as suggested 

by Eslava-Gomez and Marriott (1993), or by maximizing the minimum of the ratios D'L^/D'fj. Both 
these methods are computationally very complex, but can be managed when p is small. 

Note 2.7. The choices of M and W ;is inputs in the analysis for canonical coordinates need some 
discussion. The choice of M is related to the distance measure between profiles appropriate to a given 
investigation. In taxonomical classification, M is generally chosen as the inverse of the variance-covariance 
(dispersion) matrix of the measurements on units within taxa leading to Mahalanobis (1936) distance (see 
Rao (1945, 1947)). The matrix W is taken to be diagonal with the i-th diagonal element w, proportional 
to the number of individuals sampled from the i-th taxa to estimate its profile. For a chosen M, the 
configuration of the profiles in the reduced space will depend on W, but is likely to be robust provided 
the Wi's are not widely different. In the study reported in Rao (1948), all the w^'s were chosen as 
equal although the sample sizes for different populations were different. However, the choice of w;'s as 
proportional to sample sizes enables us to test hypotheses on goodness of fit of lower dimensional planes 
to the observed profiles. For details, the reader is referred to Rao (1973,pp. 556-560, 1985). 

If we desire that the configuration of a subset of profiles to be better preserved in the reduced space 
than the others, then we have to give bigger weights to those profiles. 
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Note 2.8. In many situations we have a data matrix X giving the measurements of p variables made 
on m individuals without any further information to guide us in the choices of the M and W matrices. 
In such cases, the usual choices of M and W are the unit matrices and the resulting canonical coordinate 
analysis is the Principal Component Analysis (PCA) introduced by Hotelling. Some characterizations of 
the principal components and their applications are given in papers by Rao (1958, 1964, 1987). It is also 
the practice to apply PCA on CX, i.e., after a suitable scaling of the measurements. One choice of C is a 
diagonal matrix with the i-th diagonal element a = .s^1/2, where s« is the i-th diagonal element of the 
matrix 

(X-Xl')(X-Xiy. (2.23) 

This procedure is equivalent to using the canonical coordinate analysis choosing M = C and W = I. 
Another possibility which has not been considered before is the choice, a = l/m* where m, is a measure 
of location such as the mean or median of the measurements on the i-th variable. 

Note 2.9. A more general problem not considered in this paper is as follows. The basic space is 
somewhat general with a specified nonnegative proximity index between any two points. Given a set of 
points with the matrix of proximity indices between points, the problem is to transform the points to 
a low dimensional Euclidean space such that the inequality relationships between proximity indices are 
maintained to the extent possible in the corresponding Euclidean distances. Such a transformation is 
achieved through the algorithm for multidimensional scaling as developed by Kruskal and Wish (1978). 

3.  Loss of information 

The representation of the PP's in a lower dimensional space will entail some loss of information 
depending on the object of statistical analysis. However, we provide some general criteria for assessing 
the amount of distortion in the configuration of the profiles due to reduction of dimensionality. 

In Theorems 1 and 2 of Section 2, it is shown that the best approximation to X in the reduced space 
is 

X' = *1' + M-l'*U(k)A(k)V(k)W-x'2 (3.1) 

so that the matrix 

Dx = X - X = M-l'2(\k+lUk+lVl+l +... + XPUPV;)W-^2 (3.2) 

gives a complete account of the errors in individual profiles due to reduction. 
The configuration of the profiles in the reduced space is 

C{k) = W-WvwK\k)Vlk)W-W (3.3) 

so that the matrix 

Di = C{V) -CW = W-l/2(A"|+1Vi+iVt'+i +--. + \2
pVpV;)W-1'2 (3.4) 

measures the distortion in the configuration, where C(p) = C as defined in (2.4). An overall (weighted) 
measure of loss of information is the ratio of 

trace    Wl'2D2W
il2 = X2

+l + ... + A2,, (3.5) 

to the total variation (A'f + ... + A2,), which can be written as 

k p 

1-£A?)/E A?)- (3-6) 
l l 

It is more important to assess the distortions in the inter profile squared distances. The matrix of 
these squared distances denoted by S can be computed from the configuration matrix C using the formula 

S = cl1 + Ic - 2C (3.7) 

where c is the vector of the diagonal elements of C. The corresponding matrix in the reduced space is 

S(k)=c{k)l
l + \c'-2C{k) (3.8) 
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so that the matrix 

£>3 = 5-S(fc) = (^) (3.9) 

measures the deficiencies in the distances due to reduction of dimensionality.   An over all measure of 
deficiency is 

l^WiWjd^ = \\+l + ... + X2
v (3.10) 

which is the same as in (3.5). 
The dispersion matrix between profiles in the whole space, as introduced in (2.13) is 

B = (X - tl')W(X - £1')' = (bij) (3.11) 

while the corresponding matrix in the reduced fc-dimensional space is 

BW = M-ll*U{k)K\k)U[k)M-W = (bij(k)). (3.12) 

The proportion of the between profile variance in the i-th variable explained by the first k canonical 
variates (coordinates) is 

l>ii(k)/t>u, i = 1,... ,p. (3.13) 

For an interpretation of the canonical coordinates in different dimensions it would be useful to 
compute the proportion of variance in each variable explained by each of the canonical variates, i.e., 
to obtain a decomposition of (3.13) in terms of canonical variates. For this purpose, we introduce the 
matrices 

Ei    =    M~y'\\lUl :...: XpU„) = («„■) (3.14) 

E-2    =    (eij/y/b~) = (flj) (3.15) 

where bü is as defined in (3.11). Let £i(fc) be the matrix obtained by retaining only the first k columns 
in E, for i=l,2. Then it is seen that 

EiE[=B,EmE'Uk)=B(k). (3.16) 

Let us consider the matrix £1(/t) and define what may be called canonical coordinates for variables 
(CCV) in k dimensions as follows. 

TABLE 1. Canonical coordinates for variables 

variable dim 1 dim 2 dim k 
1 en e12 ei* 
2 «21 «22 e2jt 

P ep\ eP2 ■■■ e-vk 

If we plot the variables as points in Ek using the row coordinates in different dimensions, then the 
scalar products of the vectors representing the variables are the elements of B(k), the best A;-dimensional 
approximation to B. 

There is some advantage in plotting the variables using the standardized coordinates (/i;-) defined in 
(3.15) as shown in Table 2. 

The magnitudes in the right hand block of Table 2 indicate the influence of different variables in 
each dimension (canonical variate) in the reduced space. This may enable us to associate each dimension 
with certain variables.We may plot the variables using the standardized CCV's in the same chart as the 
canonical coordinates for the profiles. It is seen that all variable points lie inside the unit sphere in Ek, 
and the variables close to the surface of the sphere have greater influence on the canonical variates. 

It may also be mentioned that it is the usual practice in a biplot to represent the z'-th variable as a 
directed line using the direction cosines proportional to the i-th row elements in the matrix 

Ei(k)=M-l/2(Ui:...:Uk) (3.17) 
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TABLE 2. Standardized CCV's and the variance explained by each canonical variate 

Standardized        Proportion of variance 
Variable      coordinates explained 

dim 1... dim k dim 1... dim k total 

in which case the projections of a profile point in these directions are proportional to the approximate 
coordinates of the profile in the original space (see Gabriel (1971) and Grcenacre (1993)). 

Note. 3.1. We may consider the k columns in Table 1 of the CCV's as k points in the jxlimcnsional 
variable space. These points were termed as typical profiles in Rao (1964), in the sense that the variance- 
covariance matrix of the variables computed from them provides the best approximation to that computed 
from all the original profiles. 

Note 3.2. The standardized CCV's are not the coordinates for row profiles. They are used for 
interpreting the CC's of column profiles. If a representation of row profiles is needed, we consider the 
matrix A'' with appropriate choices of the M and W matrices (which may be different from those used 
for column profiles) and repeat the analysis indicated in (2.6)-(2.8). 

4.  Application to two way contingency tables 

We consider dichotomous categorical data with s rows and m columns and n^- observations in the 
(i,j)-th cell. Define 

"i s s      m 

N    =    (7iy),7ii. = ^2nij, n.j = Y^nij, n = ^^«ü 
j=l i=l 11 

R    =    Diag (nx./n,... ,ns,/n), C = Diag (n.i/n,... ,n.m/n) 

Pl\r /Pl|l 
P    =    n~lNC~] = 

Q    =    n~lR-yN = 

,    column profiles (4.1) 

,     row profiles 

(Pi,-.- ,Ps)' =p = Rl, q = C\ = («/i,... ,<•/,„)'. (4.2) 

The problem is to represent the column (row) profiles as points in Ek,k < s, such that the Euclidean 
distances between points reflect specified affinities between the corresponding column (row) profiles. 

The technique developed for this purpose by Denzecri (1992) is known as correspondence analysis 
(CA) which can be identified as canonical coordinate analysis. For instance, for representing the column 
profiles by this method, one chooses 

X = P, M = R-\ W = C (4.3) 

and applies the analysis described in Theorem 1 (equation (2.6)). Thus one finds the s.v.d. of 

R-l'*(P - PV')C{I2 = \{UyVl + ... + \,UBV, (4.4) 

giving the coordinates for the column profiles in Ek 

\iC-l'2Vu\2C-"2V2,...,\kC-xl2Vk (4.5) 
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where the components of i-th vector are the coordinates of the profiles in the i-th dimension. The 
standardized canonical coordinates in Ek for the rows, as described in (3.15), obtained from the same 
s.v.d. as in (4.4) are 

A1A-1fi1/'2C/1,A2A-1i?1/2[/2,... ,\k&-lR"2Uk (4.6) 

where the components of the i-th vector are the coordinates of the rows in the i-th dimension and A is 
a diagonal matrix with the i-th diagonal element as the square root of the i-th diagonal element of the 
matrix 

7?1/2(A2[/, U[ + ... + X2
3UsU's)R

l/2 = (P- pl')C(P - pi')'. (4.7) 

The coordinates (4.6) do not represent the row profiles but are useful in interpreting the different dimen- 
sions of the column profiles. The coordinates for representing the row profiles in correspondence analysis 
are given in (4.11). 

Implicit in this analysis is the choice of measure of affinity between the i-th and j-th profiles as the 
squared distance (with pi,... , p, as defined in (4.2)) 

4 = fol'-'''">'■K..+ fo|'-^>a (4.8) 
Pi Ps 

which is the chisquarc distance. The squared Euclidean distance in Ek, the reduced space, between the 
points representing the i-th and j-th profiles is an approximation to (4.8). Thus the clusters we see in 
the Euclidean representation is based on the affinities as measured by the chisquare distance (4.8). 

Why should one choose the chisquare distance to measure the affinities between profiles? Some of 
the advantages mentioned by Benzecri and Greenacrc are as follows. 

1. Note that the expression in (4.4) 

R-l'2(P - pl'JC1'2 = Rl'2{Q - 1(/)C-'/2 = T (4.9) 

so that if we need a representation of the row (as population) profiles in Ek, we use the same s.v.d. as 
in (4.4) 

Rl'2{Q - lq')C-[l2 = XiUiVl + ... + \SUX (4.10) 

leading to the row (population) coordinates 

{\,R-"2Uy :...:XkR-,/2Uk) (4.11) 

so that no extra computations are needed if we want a representation of the row profiles also. In 
correspondence analysis it is customary to plot the points (4.5) and (4.11) in the same chart. Then 
the standardized coordinates for the columns (as variables) are 

A.Ar'C1/'2!/!,... ,Xk^
lCl/2Vk (4.12) 

where At is the diagonal matrix with the i-th diagonal element as the square root of the i-th diagonal 
element of (Q - lq')'R{Q - If/'). 

2. It is easy to see that 

n(A?+ ... +A2.)    =   n trace TT,    with T as in (4.9) 

y V" (»ij -npigj)2 

which is the Pearson chisquare statistic for testing independence between the attributes in a contingency 
table. Thus the computations involved in CA automatically allow us to test for independence, and also 
tests for the dimensionality of the space of profiles using statistics of the type 

n(A2 + ... + A2),i = l,2,... (4.13) 

as discussed in Rao (1973, pp. 556-5G0). 

3. CA is only an exploratory data analysis to examine the configuration of row and column profiles 
in a general way, so that a particular convenient choice of the distance measure can serve the purpose. 

On the other hand, there seem to be some drawbacks in using the chisquare distance. 
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1. The chisquare distance (4.8) is not a function of the i-th and j'-th column profiles only. It involves 
the marginal profile which is a weighted average of the individual column profiles. The weights depend on 
the observed numbers of individuals in the column categories. These numbers may not have any relevance 
to the problem under study, especially when the columns represent different populations from each of 
which some individuals are chosen and classified according to row categories. In such a case the marginal 
profile depends on the actual sample sizes chosen or realized for different populations. The examples 
discussed in the sequel show that the derived configurations in the reduced space may be sensitive to the 
sample numbers. 

2. The marginal profile depends on the set of populations included in CA. The CA's based on a given 
set of populations (Si) and an extended set of populations (Si,S-2) may provide different configurations 
to the subset Si. 

3. There is no particular advantage in plotting the row and column profiles in the same chart. Indeed 
one could use; different distance measures for column and row profiles and study configurations of the 
column and row profiles separately. 

4. Since the chisquare distance uses the marginal proportions in the denominator, undue emphasis 
is given to the categories with low frequencies in measuring affinities between profiles. 

An alternative to the chisquare distance which has some advantages is the Hellinger Distance (HD) 
between the i-th and j-th column profiles defined by 

4 = (\/Pi\i- \/Pi\j)'+ ■ ■ ■ + (y/l^\i ~ y/PTü)2 (4T4) 

which depends only on the i-th and j'-t.h column profiles. In such a case, the Euclidean distance in the 
reduced space between the i-th and j-th column profiles is an approximation to (4.14). For the derivation 
of canonical coordinates of the column profiles (considered as population) we choose 

/Pi\i    ■■■      sfih\r, 
X = 

(Vs\\       ■ ■ ■       y/Ps\m/ 

M — I, W = C = Diag (71.1/71,... ,ii.m/ii) 

and consider the s.v.d. 

(X - Zl')C1'2 = A, (/, I',' + ... + \,UKV'„. (4.15) 

We may choose £' = (£1,•■ • , £s) as 

&    =    s/Wi = s/ni.jn,    or (4.16) 

=    "•"'(» \^/PI\~\+ ■■■ +n.my/p~^). (4.17) 

The canonical coordinates in Ek for the column profiles choosing £ as in (4.10) or (4.17) are 

\iC-1/2Vi,\2C-l/-V>,... ,XkC-,/2Vk (4.18) 

where the components of the i-th vector are the coordinates of the in column (population) profiles in the 
i-th dimension. The standardized coordinates in Ek for the variables, i.e., the row categories, obtained 
as described in (3.15) from the same s.v.d. as in (4.15) are 

AiA-'cq.A.A-'t/,,... ,XkA-lUk (4.19) 

whore A is a diagonal matrix with the i-th diagonal element as the square root of the i-th diagonal 
element of 

\\Ui [/(+... + X;U,U'S = (X - £1')C{X - £1')'. (4.20) 

The .s components of A;A-'{/j in (4.19) are the coordinates of the variables in the i-th dimension. 
It can be shown that the statistic 

4»,(A'f + ... + A'f) (4.21) 

is distributed asymptotically as chisquare on (.s — l)(m — L) degrees of freedom to test independence in 
the two way contingency table. Further, hypotheses specifying the dimensions of the subspace in which 
the profiles can be represented can also be tested in the same way as in (4.13) using the residual singular 
values. 
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The advantages in using HD between profiles are the following. 
1. The measure depends only on the profiles of the concerned pair. It is not altered when an extended 

set of profiles is considered. 
2. The measure does not depend on the sample sizes on which the profiles are estimated. 
3. If a representation of the row profiles is also needed we take X = sqrt(Q'), i.e., the elements of X 

are the square roots of the elements of Q' where Q is the matrix defined in (4.2) and compute the s.v.d. 

(X -7,1')/?1/2 = tnAiB[ +... + nsAsB's (4.22) 

leading to the canonical coordinates for row profiles 

(ilR-l^Bl,fi2R-i/2B2,...,ßkR-l/2Bk. 

The corresponding standardized coordinates for the columns considered as variable are 

/iiA^Ui^A"1^,... , 

where Ar is the diagonal matrix with i-th diagonal element as the square root of the i-th diagonal element 
of 

fi\AxA\ + ... +/rkA,A[H. 

4. If we choose £ as in (4.1C), then the matrix in (4.15) is 

(A'-o')c,/a = (J^-i/—^) 
hii. n. 

n    it, 

which is symmetric in i and j.   Then, the same s.v.d.   as in (4.15) could be used for computing the 
canonical coordinates 

A,/r'/'-[/,, x2R-l/2u2,..., XkR~l/2Uk 

for the row profiles, as in the case of CA. 

Example 4.1. 

We consider the data (from Greenacre (1993)) on 796 scientific researchers classified according to 
their scientific discipline (as populations) and funding category (as variables) as shown in Table 3. 

TABU; 3.  Scientific disciplines by research funding categories 

Scientific discipline Funding category Total 

a        b        c        (1        e 

Geology G 3 19 39 14 10 85 
Biochemistry Bx 1 2 13 1 12 29 
Chemistry C G 25 49 21 29 130 
Zoology z 3 15 41 35 2G 120 
Physics p 10 22 47 9 26 114 
Engineering E 3 11 25 15 34 88 
Microbiology Mi 1 6 14 5 11 37 
Botanv B-, 0 12 34 17 23 86 
Statistics S 2 5 11 4 7 29 
Mathematics A/2 2 11 37 8 20 78 

Total 31    128    310    129    198       796 

The canonical coordinates for the scientific disciplines (considered as populations) in the first three 
dimensions and percentage of variance explained by each arc given in Table 4 for the analyses based on 
the chisquare distance (correspondence analysis) and the Hellinger distance (alternative). The formula 
(4.10) is used for the analysis based on chisquare and the formula (4.15) for that based on Hellinger 
distance. For Hellinger distance analysis, the central point is chosen according to the formula (4.17). 
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TABLE 4. Canonical coordinates for the scientific disciplines in the first three dimensions 

Subjects Chisquare Distance Hellinger distance 

diml dim2 dim3 diml dim2 dim3 

G .076401 .302569 -.087749 -.031140 .167408 -.048245 
Bi .179892 -.454996 -.151716 -.129374 -.242174 -.077614 
C .037644 .073353 .042371 -.021144 .040433 .028254 
Z -.327365 .102283 .064515 .138850 .045255 .056894 
P .315552 .026997 .108688 -.165340 .010679 .023844 
E -.117495 -.291712 .107330 .049451 -.129906 .082901 
A/, .012766 -.109656 -.041435 -.004913 -.052588 -.008439 
B2 -.178695 -.038501 -.129055 .151404 -.036559 -.108025 
S .124638 .014162 .107190 -.066639 .011763 .052571 

Mi .106751 -.061316 -.175688 -.050307 -.037572 -.078006 

/o 47.20 36.66 13.11 45.87 34.10 16.57 

The plots of the scientific disciplines (subjects) using the canonical coordinates based on the chisquare 
and Hellinger distances are given in Figures 1 and 2 respectively. The coordinates in the third dimension 
are plotted on a line on the right hand side of the two dimensional plot. This will be of help in visualizing 
the plot in three dimensions and in interpreting the distances in the two dimensional plot. Thus, although 
B-2 and E appear to be close to each other in the two dimensional chart, they are clearly separated in 
the third dimension. No additional distances in the third dimension are involved in the case of P, C, S, Z 
and E. 

It is of interest to note in this example that the configuration of the scientific disciplines in three 
dimensions obtained by both the methods are very similar. The percentage variance explained in each 
dimension is nearly the same for both the methods. 

The standardized canonical coordinates for the funding categories (considered as variables) are com- 
puted using the formula (4.12) for the chisquare analysis and the formula (4.19) for the Hellinger distance 
analysis. These are obtained from the same s.v.d. used to compute the canonical coordinates for the 
scientific disciplines. Table 5 gives the standardized canonical coordinates for the funding categories, a, 
b, c, d, e, using the two methods. 

TABLE 5. Standardized canonical coordinates for funding categories 
(variables) in the first three dimensions 

Funding Chisquare Distance Hellinger Distance 
category 

diml    dim2    dim3    %var    diml    dim2    dim3    %var 

a .758 .114 -.619 97.1 -.796 -.164 -.573 98.9 
1) .535 .728 -.137 83.5 -.438 -.766 -.008 77.9 
c .583 .352 .694 94.6 -.501 -.327 .759 93.4 
d -.426 .331 -.172 99.8 .888 -.358 -.285 99.7 
e -.108 -.909 -.081 99.6 .088 .978 -.159 98.9 

The standardized canonical coordinates for the funding categories are plotted in Figure 3 (for 
chisquare distance) and in Figure 4 (for Hellinger distance). It may be noted that all the points lie 
within the unit circle. It is customary to represent the canonical coordinates for the subjects and vari- 
ables in one chart. We are using separate charts in order to explain the salient features of the configuration 
of the variables. The following interpretations emerge from the study of Table 5 and Figures 3 and 4. 
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1. The configurations of the funding categories as shown in Figures 3 and 4 obtained by using 
chisquare and Hellinger distances are very similar. 

This is not generally the case, although in some examples studied by the author a good deal 
of robustness was observed in the choice of the distance measure and relative sample sizes for 
the populations under study. However, addition or deletion of some populations may affect the 
configuration of the populations when correspondence analysis is used. Example 4.2 discussed 
below throws more light on the problem and shows that the analysis based on Hellinger's distance 
is more robust to relative; sample sizes. 

2. All most all the variation in the funding categories a, d and e is captured in the first three canonical 
coordinates of the scientific disciplines. A large percentage of variation in b and a is explained by 
the first three coordinates. 

3. The first dimension is strongly influenced by a,d, the second dimension by b,c. and the third 
dimension by a, c. 

Thus the use of standardized coordinates for variables enables us to interpret the different dimensions 
in terms of observed variables. Then; are other ways of plotting the coordinates of the variables as 
mentioned in the paragraphs below Table 2. Such biplots having a different interpretation are discussed 
in Gabriel (1971), Gifi (1990). Gower (1993) and Greenacre (1993). 

Note. 4.2. In computing the canonical coordinates based on Hellinger distance (HD) using the formula 
(4.15), we chose the relative sample sizes as the weights to be attached to the populations. We could 
have chosen an alternative set of weights if we wanted distances between a specified subset of populations 
to be better preserved in the reduced space than the others. In particular, we could have chosen uni- 
form weights for all populations. In fact such an option could be; exercised if the sample sizes of different 
populations were widely different. Unfortunately no such options are available in correspondence analysis. 

Example 4.2. 

In the example 4.1, there was a perfect match between the plots based on GA and HD. This probably 
demonstrates that the method of derivation of canonical coordinates is somewhat robust to the choice of 
the distance measure as well as to the weights. However the choice of HD provides an insurance against 
possible distortion due to variations in sample sizes for the populations as the following example shows. 

Table; G, reproduced from Gifi (1990), gives the distributions of the pages devoted to different topics 
denoted by .4, D, C, D, E, F and G in 20 books on Multivariate analysis designated as a, 6,... , t. Gifi 
(1990) did correspondence analysis on the data and drew some conclusions based on the first three 
canonical coordinates which explain a high percentage of variation. The first three canonical coordinates 
for the profiles of the books based on CA and HD approaches are given in Table 7. 

It may be noted that the total number of pages of a book depends on the font size of the print, while 
its profile in terms of proportions of pages used on different topics remain the same for all sizes. Table 8 
gives the data on books having the same profiles as in Table 6 with the total number of pages altered for 
the books d,f,y,h,j and n. 

The three dimensional canonical coordinates based on CA and HD approaches are given in Table 9. 
Using the coordinates one can obtain the mutual distances between the books in the three dimensional 
reduced Euclidean space. Figure; 5 gives a plot comparing the squared distances between books based 
on CA using the data of Tables G and 8. Figure G gives the corresponding plot for the squared distances 
based on the HD approach. It is seen that the three dimensional representation of the data of Tables G 
and 8 are more similar under HD analysis than that under CA. The relative positions of the books are 
influenced by the font size in printing when CA is used, although the profiles of the books are not altered. 
There appears to be greater stability with the HD analysis which provides insurance against different 
choice of sample sizes. Further, one can exercise the option of using a common weight for all the books 
in the HD analysis when the differences in book sizes are large. 
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TABLE G. Number of pages by topics 

Books      A      BCD       E       F    G 

15 

a 31 0 0 0 0 164 11 
b 0 IG 54 18 27 13 14 
c 0 40 32 10 42 60 0 
(1 19 0 35 19 28 163 52 
0 14 7 35 22 17 0 56 
f 20 G9 72 33 55 0 32 

K 74 0 86 14 0 84 48 
li 78 0 80 5 17 105 GO 
i 74 19 33 12 26 0 0 
j 80 G8 G7 15 29 0 0 
k 108 18 I 10 16 108 0 
1 109 13 5 17 39 32 46 
in IG 35 G9 24 0 26 41 
n 2G 8G GO G 48 48 28 
0 290 10 G 0 8 0 2 

P 184 48 82 42 134 0 0 
q 29 0 0 0 41 211 32 
r 0 19 5G 0 39 75 0 
S 0 22 45 42 60 230 59 
t, 30 128 90 28 48 0 0 

TABLE 7.  Canonical coordinates 

Chisquare Distance! Hellinger Distance 

dim 1 dim 2 dim 3 dim 1 dim 2 dim 3 
a -1.10857 -0.61445 -0.33902 0.64632 0.36299 0.12879 
1) 0.07397 0.70254 0.252G5 -0.01661 -0.48923 -0.12388 
c -0.21153 0.46054 -0.49228 0.10998 -0.42185 0.32822 
(1 -0.77795 -0.11074 0.15556 0.4GG58 -0.01597 -0.10284 
o. 0.02781 0.40651 1.06135 -0.19193 -0.15180 -0.45570 
f 0.35780 0.69602 0.09284 -0.37016 -0.29359 -0.14451 

a -0.16412 -0.15719 0.4G353 0.23979 0.16911 -0.35829 
h -0.25023 -0.19G2G 0.39002 0.26103 0.14730 -0.23804 
i 0.72788 -0.19452 -0.04749 -0.50899 0.14292 0.02936 

j 0.G8403 0.24337 -0.17956 -0.53320 -0.01242 0.04724 
k 0.02729 -0.36648 -0.44297 0.03996 0.21098 0.36189 
1 0.26802 -0.44749 0.28287 -0.00524 0.27070 -0.06481 
in 0.02188 0.50893 0.51719 0.01506 -0.192GG -0.34080 
n 0.12052 0.48459 -0.19476 -0.04555 -0.20966 0.04945 
0 1.08308 -1.32602 0.03206 -0.39476 0.66357 -0.00090 

P 0.G4959 -0.07081 -0.13268 -0.49299 0.09097 0.08510 

q -0.98347 -0.39273 -0.25019 0.58910 0.21379 0.19442 
r -0.4000G 0.32919 -0.3382G 0.21G05 -0.35929 0.28764 
s -0.7472G 0.08101 -0.00508 0.43349 -0.30134 0.03139 
t, 0.56547 0.81454 -0.3525G -0.511G7 -0.27874 0.10162 
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TABLE 8. Number of pages by topics 

joks A B C D E F G 
a 31 0 0 0 0 164 11 
b 0 16 54 18 27 13 14 
c: 0 40 32 10 42 60 0 
(1 190 0 350 190 280 1630 520 
V. 14 7 35 22 17 0 56 
f 10 34 3G 17 28 0 16 
K 740 0 860 140 0 840 480 
h 780 0 800 50 170 1050 600 
i 74 19 33 12 26 0 0 
j 40 34 33 8 15 0 0 
k 108 48 4 10 46 108 0 
1 109 13 5 17 39 32 46 
in IG 35 69 24 0 26 41 
n 13 43 30 3 24 24 14 
o 290 10 6 0 8 0 2 
P 184 48 82 42 134 0 0 
q 29 0 0 0 41 211 32 
r 0 19 56 0 39 75 0 
s 0 22 45 42 60 230 59 
t 30    128     90     28     48 0       0 

TABLE 9. Canonical coordinates 

Cliisquaro Distance Hcllinger Distance 

dim 1 dim 2 dim 3 dim 1 dim 2 dim 3 
a -0.62310 0.30413 -0.53463 -0.35082 -0.04632 0.42925 
h 0.63345 0.41500 0.44316 0.25096 -0.37625 -0.40565 
c 0.90486 0.78379 -0.17802 0.22985 -0.60374 -0.08540 
(1 -0.36427 0.36470 -0.12611 -0.23454 -0.16742 0.01739 
e 0.20621 0.05647 0.54414 0.34853 0.01585 -0.32928 
f 1.23299 0.45214 0.27035 0.59591 -0.20402 -0.28683 

g -0.16974 -0.27626 0.25537 -0.08445 0.24917 -0.09573 
h -0.18352 -0.18729 0.09783 -0.07908 0.11818 0.00148 
i 0.85607 -0.49586 -0.21672 0.73058 0.07206 0.07026 

j 1.35943 -0.06808 0.07459 0.77422 -0.01788 -0.04783 
k 0.61122 0.01365 -0.60327 0.28646 -0.20830 0.40764 
1 0.32350 -0.41447 -0.39537 0.23929 0.02213 0.24724 
in 0.58680 0.20860 0.65792 0.17707 0.01371 -0.36016 
ii 1.20448 0.51816 0.07444 0.32243 -0.27238 -0.09222 
o 0.47616 -I.G0929 -0.73075 0.61206 0.41339 0.46017 

P 0.87199 -0.26044 -0.37985 0.72806 -0.03491 0.09187 

q -0.44497 0.44631 -0.57047 -0.27936 -0.25639 0.41829 
r 0.34209 0.56913 -0.04981 0.10278 -0.49844 -0.07991 
s -0.10036 0.60181 -0.15749 -0.14779 -0.45659 -0.10069 
t 1.87687 0.57376 0.28038 0.78353 -0.24748 -0.19823 
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5. Concluding remarks 

A general theory is developed for plotting high dimensional "population by variable" data, i.e. mea- 
surements made on a set of characteristics of given populations, in a low dimensional Euclidean space. A 
first step in such a problem is the specification of the basic metric space in which the populations can be 
represented as points using the entire data, and a characterization of the configuration of the points in 
terms of distances between points. The second is the development of methodology for transforming the 
points from the basic space to a low dimensional Euclidean space with the usual definition of distance 
preserving the configuration of points to the extent possible. The choices of the basic space and the 
distance function between points have to be made on practical considerations depending on the problem 
under investigation. A closed form solution is obtained when the basic space is a vector space endowed 
with an inner product and the associated norm. Some examples are given involving measurements on 
discrete variables. 

When we have data in the form of frequencies of individuals of a population under different categories 
of an attribute, a well known method for dimensionality reduction for representing, say the populations, 
is correspondence analysis. The basic space in this case is a vector space where each population is 
represented by the vector of relative frequencies of the different categories of an attribute and distance 
between vectors is defined by a chisquarc type formula. Such a distance function is not an intrinsic measure 
of difference between two populations as it depends not only on the differences between their relative 
frequencies, but also on the average relative frequencies computed from the set of populations under study. 
Thus the configuration of any subset of populations depends on what other populations are included in the 
analysis, and also on the relative numbers of individuals observed from each population. An alternative 
approach of representing a population by the vector of the square roots of relative frequencies and defining 
distance between two populations by the Hellinger formula does not have the drawbacks associated with 
the chisquare type formula. In addition, the new analysis has the same advantage of providing tests 
of significance for homogeneity of the populations as in correspondence analysis based on the chisquare 
formula. 

It may be contended that CA is meant to be used for the analysis of contingency tables with di- 
chotomized data using two attributes like hair color and eye color (as originally demonstrated by R.A. 
Fisher), and not for the analysis of population by variable data where anomalies of the type described in 
the paper may occur. However, one finds in published literature more examples of the latter type of data 
analyzed through CA. Further, even with attribute data, if the configurations of the column (or row) 
profiles for two different populations (with possibly different marginal distributions) are to be compared, 
HD analysis is more appropriate than the CA. It is the author's opinion that the choice of a distance 
measure between populations (row or column profiles) must depend on the nature of the data and the 
purpose of analysis. Prescription to use a particular distance as in the CA in all problems may be mislead- 
ing. Distance measures other than the chisquare and Hellinger types may be more appropriate in some 
situations. For a purely exploratory data analysis, it is possible that a wide variety of distance measures 
reveal similar configurations of the populations in terms of clustering and inter cluster relationships. 

Between the choices of chisquare and Hellinger distances, the latter seems to offer some advantages, 
as the latter has similar theoretical properties as the former and in addition it is defined as an intrinsic 
function of two population profiles independent of what other populations are included in a study. 

A recent technical report by Itios, Villarroya and Oiler (1994) discusses the same problem as in 
the present paper, viz., simultaneous representation of populations and random variables, under the 
assumption of an underlying parametric model. 

The method, referred there as Intrinsic Data Analysis, is based on the Riemannian structure given 
by the Fisher information metric and its corresponding distance, the Rao distance. The statistical popu- 
lations are viewed as points on a Riemannian manifold and the random variables with finite expectation, 
as vector fields, namely, the gradient of the random variable mean value, or, by integration, a bundle of 
curves on the manifold. 

Then, assuming certain additional regularity conditions, a reference point on the manifold is selected 
as the statistical populations Riemannian center of mass, and the points representing the populations 
and the curves representing the variables are mapped, through the inverse of the Riemannian exponential 
map, into the tangent space at the center of mass, which has a Euclidean vector space structure. Then, 
classical dimension reduction techniques such as principal component analysis can be used to obtain a 
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low dimensional Euclidean space which allows an optimal population representation. Finally, the curves 
in the tangent space are projected into the low dimensional space obtained. 

This method is applied to multivariate normal and multinomial distributions. In the multinomial 
case, the Rao distance, p, between two populations pi,... ,pn and qlt... ,qn, is proportional to the 
Bhattacharyya distance 

n 

p = 2arccos ^ sfp~jk~i 

which is a monotone transformation of the Hellinger distance, and thus this method will share some 
properties with the latter. 
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